Chemistry answers section 2

Activity 2.1.1:

1. $\mathrm{C}: \mathrm{O}=3: 8$ Therefore Mass of $\mathrm{O}=$ mass of $\mathrm{C} \times 8 / 3=6 \times 8 / 3=16 \mathrm{~g}$
2. H is $1 / 9$ of the total mass: $1 / 9 \times 36 \mathrm{~g}=4 \mathrm{~g}$ and O is $8 / 9$ of the total mass: $8 / 9 \times 36=32 \mathrm{~g}$.

Activity 2.1.2:

1. Mass product $=$ mass $A+$ mass $B=300 \mathrm{~g}+100 \mathrm{~g}=400 \mathrm{~g}$
2. Mass $B=$ Mass $A B-$ Mass $A=25 \mathrm{~g}-10 \mathrm{~g}=15 \mathrm{~g}$
3. Mass $\mathrm{NaCl}=$ Mass $\mathrm{CaCl}_{2}+$ Mass $\mathrm{Na}_{2} \mathrm{CO}_{3}-$ Mass $\mathrm{CaCO}_{3}=2.12 \mathrm{~g}+$ $2.20 \mathrm{~g}-2.90 \mathrm{~g}=1.42 \mathrm{~g}$
4. Mass calcium oxide $=$ Mass calcium + Mass oxygen $=40.0 \mathrm{~g}+16.0 \mathrm{~g}$ $=56.0 \mathrm{~g}$
5. Mass oxygen used up = Mass magnesium oxide - Mass magnesium

$$
=40.0 \mathrm{~g}-24.0 \mathrm{~g}=16.0 \mathrm{~g}
$$

Activity 2.1.3:

1. Methane gas reacts with oxygen to form carbon dioxide gas and water vapour.
For balancing:
a. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

LHS: 1C, 4H, 2 O RHS: 1C, $2 \mathrm{H}, 3 \mathrm{O}$
b. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

LHS: $1 \mathrm{C}, 4 \mathrm{H}, 4 \mathrm{O}$ RHS: $1 \mathrm{C}, 4 \mathrm{H}, 4 \mathrm{O}$
The equation is balanced: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2. Silver nitrate reacts with aqueous sodium chloride to form solid silver chloride and aqueous sodium nitrate
For balancing:
a. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$

LHS: $1 \mathrm{Ag}, 1 \mathrm{NO}_{3}{ }^{-}, 1 \mathrm{Na}, 1 \mathrm{Cl}$ RHS: $1 \mathrm{Ag}, 1 \mathrm{NO}_{3}{ }^{-}, 1 \mathrm{Na}, 1 \mathrm{Cl}$

The equation is balanced.
3. Solid sodium reacts with water to form aqueous sodium hydroxide and hydrogen gas.

For balancing:
a. $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

LHS: $1 \mathrm{Na}, 2 \mathrm{H}, 1 \mathrm{O}$ RHS: $1 \mathrm{Na}, 1 \mathrm{OH}, 2 \mathrm{H}$
b. $\mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

LHS: $1 \mathrm{Na}, 4 \mathrm{H}, 2 \mathrm{O}$ RHS: $2 \mathrm{Na}, 4 \mathrm{H}, 2 \mathrm{O}$
c. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

LHS: $2 \mathrm{Na}, 4 \mathrm{H}, 2 \mathrm{O}$ RHS: $2 \mathrm{Na}, 4 \mathrm{H}, 2 \mathrm{O}$
The equation is balanced:

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

4. Ammonia gas breaks down (decomposes) to form nitrogen gas and hydrogen gas.

For balancing
a. $\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

LHS: 1N, 3H, RHS: 2N, 2H
b. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

LHS: 2N, 6H RHS: 2N, 2H
c. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

LHS: 2N, 6H RHS: 2N, 6H
The equation is balanced: $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
5. Sodium bicarbonate solid decomposes to form sodium carbonate, carbon dioxide gas and water vapour.
a. $\mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

LHS: $1 \mathrm{Na}, 1 \mathrm{H}, 1 \mathrm{C}$ and 3 O RHS: $2 \mathrm{Na}, 2 \mathrm{C}, 6 \mathrm{O}, 2 \mathrm{H}$
b. $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

LHS: $2 \mathrm{Na}, 2 \mathrm{H}, 2 \mathrm{C}$ and 6 O RHS: $2 \mathrm{Na}, 2 \mathrm{C}, 6 \mathrm{O}, 2 \mathrm{H}$
The equation is balanced:
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Activity 2.21

Product	Mass of 12 units (g)	Average mass of 1 unit (g)	Mass of the bag of product (g)	Number of units per bag	Number of units in a 1000 g bag of product
e.g. Rice	(e.g. 12 grains of rice)	(e.g. 1 grain of rice)	(e.g. mass of whole bag of rice)	(e.g. number of grains of rice in the bag)	(e.g. number of grains of rice in a bag weighing 1000 g)
Rice	$\begin{aligned} & 0.0125 \times 12 \\ & =0.15 \end{aligned}$	$\begin{aligned} & 0.15 / 12= \\ & 0.0125 \end{aligned}$	1000	$\begin{aligned} & 1 \times \\ & 1000.00 / 0.0125 \\ & =80000 \end{aligned}$	80000
Sugar	$\begin{aligned} & 0.0017 \times 12 \\ & =0.02 \end{aligned}$	$\begin{aligned} & 0.02 / 12= \\ & 0.0017 \end{aligned}$	500	$\begin{aligned} & 1 \times 500 / 0.0017 \\ & =2941117.65= \\ & 2941117 \\ & \text { (whole units) } \end{aligned}$	$\begin{aligned} & 2941117 x \\ & 1000 / 500= \\ & 5882234 \end{aligned}$
Apples	$\begin{aligned} & 118.15 \times 12 \\ & =1417.80 \end{aligned}$	$\begin{aligned} & 1417.80 / 12= \\ & 118.15 \end{aligned}$	1500	$\begin{aligned} & 1 \times \\ & 1500 / 118.15= \\ & 12.69=13 \\ & \text { (must be whole } \\ & \text { apples!) } \end{aligned}$	$\begin{aligned} & 13 x \\ & 1000 / 1500 \\ & =8.67=9 \\ & \text { (whole } \\ & \text { number) } \end{aligned}$
Dried beans	$\begin{aligned} & 0.97 \times 12= \\ & 11.64 \end{aligned}$	$\begin{aligned} & 11.64 / 12= \\ & 0.97 \end{aligned}$	500	$\begin{aligned} & 1 \times 500.00 / 0.97 \\ & =515.46=515 \\ & \text { (whole units) } \end{aligned}$	$\begin{aligned} & \hline 515 x \\ & 1000 / 500= \\ & 1030 \end{aligned}$
Eggs	$\begin{aligned} & 61.28 \times 12 \\ & =735.36 \end{aligned}$	$\begin{aligned} & 735.36 / 12= \\ & 61.28 \end{aligned}$	750	$\begin{aligned} & \hline 1 \times 750 / 61.28= \\ & 12.24=12 \\ & \text { (whole } \\ & \text { number) } \end{aligned}$	$\begin{aligned} & 12 x \\ & 1000 / 750= \\ & 16 \end{aligned}$

1. A dozen.
2. Work out (by calculation, not by weighing), the average mass of a single unit of each product e.g. a single grain of rice, and add this information to your table.
3. Now calculate the number of units in each bag, and add this information to your table.
4. Now calculate the number of units in a 1000 g bag of each product and add the information to the table.
5.

a. When a product is made up of very small units that would be difficult or tedious to count out e.g. rice and sugar, mass is an easier unit of measurement.
b. Larger items are easy to handle and count.
c. The lower the mass of an individual unit, the greater the number of units required to make up 1000 g . So sugar, with the smallest particles has the greatest number of units per 1000 g , and apples, which are the heaviest have the lowest number of units per 1000 g .
d. To get the same number of items of different products different masses would need to be weighed.
e. The same mass for each customer would supply the same number of units.
f. 1 atom $=0.00000000000000000000001 \mathrm{~g}\left(1 \times 10^{-23} \mathrm{~g}\right)$ x no of atoms $=1.00 \mathrm{~g}$
$x=1.00 \times 1 /\left(1 \times 10^{-23}\right)=1 \times 10^{23}$
You must weigh 1×10^{23} atoms to get a mass of 1 g .
g. Atoms are invisible to us therefore cannot be counted.

Activity 2.2.2: Relating atomic number and mass
a. The mass of a single atom of each element is equal to the atomic number on the Periodic Table for that element.
b. The mass in grams of 6.02×10^{23} atoms of a particular element is equal to the mass of one atom (amu) of that element.
c. The mass of 6.02×10^{23} atoms of a particular element is equal to the atomic mass number in grams.
d. The mass of 6.02×10^{23} atoms of a particular element becomes an easily measured amount (in grams) in the laboratory. So we
can relate mass (in grams) of a subsatnce to a particular number of atoms.

Activity 2.2.3: Mass, moles and Avogadro's Number

1. RAM Ca $=40.08 \mathrm{amu} \rightarrow$ mass of $1 \mathrm{~mole}=40.08 \mathrm{~g}$
2. Mass of 1 mole of nickel atoms $=58.69 \mathrm{~g} \rightarrow$ Mass of 0.235 moles $=$ $0.235 \times 58.69 \mathrm{~g}=13.79 \mathrm{~g}$
3. 1 mole contains 6.02×10^{23} atoms $\rightarrow 0.250$ moles contains $0.250 \times$ 6.02×10^{23} atoms $\rightarrow 1.51 \times 10^{23}$ atoms
4. 1 mole of arsenic contains 6.02×10^{23} arsenic atoms $\rightarrow 3.2$ moles contains $3.2 \times 6.02 \times 10^{23}$ atoms $=19.26 \times 10^{23}=1.93 \times 10^{24}$ atoms
5. 6.02×10^{23} atoms of aluminium have a mass of $26.98 \mathrm{~g} \rightarrow 3.02 \mathrm{x}$ 10^{23} atoms have a mass $=\left(3.02 \times 10^{23} / 6.02 \times 10^{23}\right) \times 26.98 \mathrm{~g}$ $=13.54 \mathrm{~g}$
6. 6.02×10^{23} atoms of caesium have a mass of $132.9 \mathrm{~g} \rightarrow 10000$ atoms have a mass $=\left(1.0 \times 10^{4} / 6.02 \times 10^{23}\right) \times 132.9 \mathrm{~g}=1.7 \times 10^{-20}$

Activity 2.2.4:
The molar mass of the compound would be the sum of the molar masses of the constituent elements of the compound.
CO_{2} would have a molar mass $=12.01+(2 \times 16.00)=44.01 \mathrm{~g}$
Mass of $\mathrm{C}=12.01 \mathrm{~g}$; Mass of $\mathrm{O}=32.00 \mathrm{~g}$
NaOH would have a molar mass $=22.99+16.00+1.01=40.00 \mathrm{~g}$
Mass of $\mathrm{Na}=22.99 \mathrm{~g}$; Mass of $\mathrm{O}=16.00 \mathrm{~g}$; Mass of $\mathrm{H}=1.01 \mathrm{~g}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$ would have a molar mass $=(2 \times 1.01)+32.06+(4 \times 16.00)$
$=98.08 \mathrm{~g}$
Mass of $\mathrm{H}=2.01 \mathrm{~g}$; Mass of $\mathrm{S}=32.06 \mathrm{~g}$; Mass of $\mathrm{O}=64.00 \mathrm{~g}$

Activity 2.2.5: Working with formula and molar masses

1. Answer the following questions and place your answers in a table like the one suggested below:

	CO	AlCl_{3}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$
Type structure	Molecule	Formula unit	Molecule	Formula unit
Molar mass (g)	$\begin{aligned} & 12.01+16.00= \\ & 28.01 \end{aligned}$	$\begin{aligned} & 26.98+(3 \times 35.45) \\ & =133.33 \end{aligned}$	$\begin{aligned} & (2 \times 1.01)+16.00 \\ & =18.02 \end{aligned}$	$\begin{aligned} & (2 \times 55.85)+(3 \times \\ & 16.00)=159.70 \end{aligned}$
Total atomic mass first element (g)	12.01	26.98	2.02	111.70
Atomic mass second element (g)	16.00	106.35	16.00	48.00
\% first element	$\begin{aligned} & 12.01 / 28.01 x \\ & 100 \%=42.88 \% \end{aligned}$	$\begin{aligned} & 26.98 / 133.33 x \\ & 100 \%=20.24 \% \end{aligned}$	$\begin{aligned} & 2.02 / 18.02 \mathrm{xx} \\ & 100 \%=11.21 \% \end{aligned}$	$\begin{aligned} & 111.70 / 159.70 x x \\ & 100 \%=69.94 \% \end{aligned}$
\% second element	$\begin{aligned} & 16.00 / 28.01 \times \\ & 100 \%=57.12 \% \end{aligned}$	$\begin{aligned} & 106.35 / 133.33 x \\ & 100 \%=79.76 \% \end{aligned}$	$\begin{aligned} & 16.00 / 18.02 x \\ & 100 \%=88.79 \% \end{aligned}$	$\begin{aligned} & 48.00 / 159.70 x \\ & 100 \%=30.06 \% \end{aligned}$
Total \%	$\begin{aligned} & 42.88 \%+57.12 \%= \\ & 100 \% \end{aligned}$	$\begin{aligned} & 20.24 \%+79.76 \%= \\ & 100 \% \end{aligned}$	$\begin{aligned} & 11.21 \%+88.79 \%= \\ & 100 \% \end{aligned}$	$\begin{aligned} & 69.94 \%+30.06 \%= \\ & 100 \% \end{aligned}$
Mass first element per 100 g	$\begin{aligned} & 42.88 / 100 \times 100 \mathrm{~g} \\ & =42.88 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 20.24 / 100 \times 100 \mathrm{~g} \\ & =20.24 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 11.21 / 100 \times 100 \mathrm{~g} \\ & =11.21 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 69.94 / 100 \times 100 \mathrm{~g} \\ & =69.94 \mathrm{~g} \end{aligned}$
Mass second element per 100 g	$\begin{aligned} & 57.12 / 100 \times 100 \mathrm{~g} \\ & =57.12 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 79.76 / 100 \times 100 \mathrm{~g} \\ & =79.76 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 88.79 / 100 \times 100 \mathrm{~g} \\ & =88.79 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 30.06 / 100 \times 100 \mathrm{~g} \\ & =30.06 \mathrm{~g} \end{aligned}$

e.
f. The \% (by mass) is the mass of each element present in any mass of the compound e.g. in CO, C forms 42.88% of the total mass and O forms 57.12% of the total mass.
g. The \% will stay constant for a particular compound (Law of Constant composition) but it varies between different compounds.
h. The percentage composition (by mass) of elements in a compound is the ratio of all the elements present in the compound expressed as a percentage of their relative masses.
i.
j. A compound composed of 4 different elements would have 4% composition values to describe its composition - one for each of the component elements.

Activity 2.2.6:

1. Molar mass $\mathrm{CO}_{2}=12.01+(2 \times 16.00)=44.01$ $\% \mathrm{C}$ in $\mathrm{CO}_{2}=12.01 / 44.01 \times 100 \%=27.29 \%$ Mass C in $150 \mathrm{~g}=27.29 / 100 \times 150.0 \mathrm{~g}=40.94 \mathrm{~g}$
2. Molar mass $\mathrm{CO}=12.01+16.00=28.01$
$\% \mathrm{C}$ in $\mathrm{CO}_{2}=12.01 / 28.01 \times 100 \%=42.88 \%$
Mass C in $150 \mathrm{~g}=42.88 / 100 \times 150.0 \mathrm{~g}=64.32 \mathrm{~g}$
3. Molar mass $\mathrm{CH}_{4}=12.01+(4 \times 1.01)=16.05$
$\% \mathrm{C}$ in $\mathrm{CO}_{2}=12.01 / 16.05 \times 100 \%=74.83 \%$
Mass C in $150 \mathrm{~g}=74.83 / 100 \times 150.0 \mathrm{~g}=112.24 \mathrm{~g}$
4. Molar mass $\mathrm{CaCO}_{3}=40.08+12.01+(3 \times 16.00)=100.09$
$\% \mathrm{C}$ in $\mathrm{CO}_{2}=12.01 / 100.09 \times 100 \%=12.00 \%$
Mass C in $150 \mathrm{~g}=12.00 / 100 \times 150.0 \mathrm{~g}=18.00 \mathrm{~g}$
5. Molar mass $\mathrm{CH}_{3} \mathrm{COOH}=(2 \times 12.01)+(2 \times 16.00)+(4 \times 1.01)=60.05$ $\% \mathrm{C}$ in $\mathrm{CO}_{2}=(2 \times 12.01) / 60.05 \times 100 \%=39.98 \%$
Mass C in $150 \mathrm{~g}=39.98 / 100 \times 150.0 \mathrm{~g}=59.98 \mathrm{~g}$
6. Trick question! The symbol is Cl for chlorine and no C is present!

Activity 2.2.7:

1. From mass and molar mass one can calculate number of moles (n) :
$\mathrm{n}=$ mass $/ \mathrm{RMM}=21.0 \mathrm{~g} / 44.01 \mathrm{~g}=0.477$
From n and volume at STP one can calculate actual volume:
$\mathrm{n}=$ actual vol/molar vol so actual vol $=\mathrm{n} \times$ molar vol $=0.477 \times 22.41$
dm ${ }^{3}$
$=10.7 \mathrm{dm}^{3}$
2. From actual vol and molar vol (at $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$) one can calculate n :
$\mathrm{n}=$ actual vol $/ \mathrm{molar}$ vol $=0.0573 \mathrm{dm}^{3} / 24.47 \mathrm{dm}^{3}=1.40$
From n and RMM of NO one can calculate the mass of NO:
$\mathrm{n}=\mathrm{mass} / \mathrm{RMM}$ so mass $=\mathrm{n} \times \mathrm{RMM}=1.40 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \times(14.01+16.00)$
$\mathrm{g}=42.0 \mathrm{~g}$
3. 6.02×10^{23} molecules of H_{2} occupy $22.41 \mathrm{dm}^{3}$ at STP
2.44×10^{19} molecules of H_{2} occupy $22.41 \mathrm{dm}^{3} \times\left(2.44 \times 10^{19}\right) /(6.02 \times$ 10^{23}) at STP $=9.08 \times 10^{-4} \mathrm{dm}^{3}$
4. 1 mole of O_{2} has a mass of $2 \times 16.00 \mathrm{~g}=32.00 \mathrm{~g}$ and occupies 22.41 dm^{3} at STP.
55.0 g of O_{2} would occupy $55.0 \mathrm{~g} / 32.00 \mathrm{~g} \times 22.41 \mathrm{dm}^{3}=38.5 \mathrm{dm}^{3}$
5. 1 mole of N_{2} has contains 6.02×10^{23} molecules and occupies 24.47 dm^{3} at STP
5.0×10^{22} molecules of N_{2} would occupy $5.0 \times 10^{22} / 6.02 \times 10^{23} \times$ $24.47 \mathrm{dm}^{3}=2.03 \mathrm{dm}^{3}$

Activity 2.2.8:

1. $\mathrm{RMM} \mathrm{NaOH}=22.99+16.00+1.01=40.00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Moles $\mathrm{NaOH}=$ mass $/ \mathrm{RMM}=17.0 \mathrm{~g} / 40.00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=0.425 \mathrm{~mol}$ Concentration $=$ moles $/$ volume $=0.425 \mathrm{~mol} / 0.250 \mathrm{dm}^{3}=1.70$ mol.dm ${ }^{13}$
2. $\mathrm{RMM} \mathrm{CuSO} 2.5 \mathrm{H}_{2} \mathrm{O}=63.55+32.06+(7 \times 16.00)+(10 \times 1.01)=$ 217.7 g. mol^{-1}

Moles $\mathrm{CuSO}_{2} .5 \mathrm{H}_{2} \mathrm{O}=$ mass $/ \mathrm{RMM}=300.0 \mathrm{~g} / 217.7 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=1.38 \mathrm{~mol}$ Concentration $=$ moles $/$ volume $=1.38 \mathrm{~mol} / 750 \times 10^{-3} \mathrm{dm}^{3}=1.84$ mol.dm ${ }^{13}$
3. $\mathrm{RMM} \mathrm{HCl}=1.01+35.45=36.46 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Moles $\mathrm{HCl}=$ mass $/ \mathrm{RMM}=8.3 \mathrm{~g} / 36.46 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=0.228 \mathrm{~mol}$
Volume $=$ moles $/$ concentration $=0.228 \mathrm{~mol} / 6.0 \mathrm{M}=0.038 \mathrm{dm}^{3}=38$ ml
4. $\mathrm{RMM} \mathrm{NaCl}=22.99+35.45=58.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Moles present $=$ concentration \times volume $=3.2 \mathrm{~mol}^{2} \mathrm{dm}^{13} \times 50.0 \times 10^{-3}$ $\mathrm{dm}^{13}=0.16$ moles
Mass present $=$ moles \times RMM $=0.16 \mathrm{~mol} \times 58.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=9.4 \mathrm{~g}$
5. $\mathrm{RMM} \mathrm{CaCl} 2=40.08+(2 \times 35.45)=110.98 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Moles $\mathrm{CaCl}_{2}=$ mass $/ \mathrm{RMM}=4.55 \mathrm{~g} / 110.98 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=0.04 \mathrm{~mol}$
Concentration $=$ moles $/$ volume $=0.04 \mathrm{~mol} / 0.150 \mathrm{dm}^{3}=0.27 \mathrm{~mol} . \mathrm{dm}^{13}$
6. $\mathrm{RMM} \mathrm{FeCl} 3=55.85+(3 \times 35.45)=162.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Moles present $=$ concentration \times volume $=0.200$ mol.dm ${ }^{13} \times 2.00$ $\mathrm{dm}^{13}=0.400$ moles
Mass present $=$ moles \times RMM $=0.400 \mathrm{~mol} \times 162.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=64.9 \mathrm{~g}$

Activity 2.2.9:

1. CH_{2}
2. $\mathrm{CH}_{2} \mathrm{O}$
3. $\mathrm{H}_{2} \mathrm{O}$
4. CH_{2}

Activity 2.2.10:
1.

Elements	C	H	O	
$\%$ mass	40.0	6.7	53.3	
Mass (g) in 100 g sample	$40.0 / 100 \mathrm{x}$ $100 \mathrm{~g}=40.0$	$6.7 / 100 \times 100 \mathrm{~g}$ $=6.7$	$53.3 / 100 \mathrm{x}$ $100 \mathrm{~g}=53.3$	
Molar mass (g/mole)	12.01	1.01	16.00	
No of moles $=$ mass $/$ molar mass	$40.0 / 12.01=$	3.33	$6.7 / 1.008=$	
Divide both sides by lower value to give a whole number of 1 for one element at least	$3.33 / 3.33=1$	$6.65 / 3.33=2$	$3.3 / 16.00=$	
Empirical formula	CH2			

$E F M=12.01+1.01+1.01=14.03 \mathrm{~g} / \mathrm{mole}$
No of multiples in molecular formula $=$ Molar mass/EFM $=60.0$ $\mathrm{g} / \mathrm{mole} / 29.02 \mathrm{~g} / \mathrm{mole}=2$

Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
2. A hydrocarbon is made from C and H atoms only. If 85.7% is C , $100-85.7=14.3 \%$ is H

Elements	C	H
$\%$ mass	85.7	14.3
Mass (g) in	$85.7 / 100 \mathrm{x}$	$14.3 / 100 \mathrm{x}$
100 g sample	$100 \mathrm{~g}=85.7$	$100 \mathrm{~g}=14.3$

Molar mass (g/mole)	12.01	1.01
No of moles $=$ mass/molar mass	$85.7 / 12.01=$ 7.14	$14.3 / 1.008=$ 14.19
Divide both sides by lower value to give a whole number of 1 for one element at least	$7.14 / 7.14=1$	$14.19 / 7.14=2$
Empirical formula	CH_{2}	

$E F M=12.01+1.01+16.00=29.02 \mathrm{~g} / \mathrm{mole}$
No of multiples in molecular formula $=$ Molar mass/EFM $=84.0$ $\mathrm{g} / \mathrm{mole} / 14.03 \mathrm{~g} / \mathrm{mole}=6$

Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{12}$
3.

Elements	Fe	O
$\%$ mass	72.3	27.7
Mass (g) in 100 g sample	$72.3 / 100 \mathrm{x}$ $100 \mathrm{~g}=72.3$	$27.7 / 100 \mathrm{x}$ $100 \mathrm{~g}=27.7$
Molar mass (g/mole)	55.85	16.00
No of moles $=$ mass $/$ molar mass	$72.3 / 55.85=$	$27.7 / 16.00=$
Divide both sides by lower value to give a whole number	$1.29 / 1.29=1$	$1.73 / 1.29=1.34$

of 1 for one element at least		
To convert both numbers to whole numbers, x3	$1 \times 2=3$	$1.34 \times 3=4$
Empirical formula	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	

$\mathrm{EFM}=(55.85 \times 3)+(16.00 \times 4)=231.55 \mathrm{~g} / \mathrm{mole}$
No of multiples in molecular formula $=$ Molar mass/EFM $=231.4$ $\mathrm{g} / \mathrm{mole} / 231.55 \mathrm{~g} / \mathrm{mole}=1$

Molecular formula $=\mathrm{Fe}_{3} \mathrm{O}_{4}$
4.

Elements	C	H	O
\% mass	40.0	5.7	53.3
Mass (g) in 100 g sample	$40.0 / 100 \mathrm{x}$ $100 \mathrm{~g}=40.0$	$5.7 / 100 \times 100 \mathrm{~g}$ $=5.7$	$53.3 / 100 \mathrm{x}$ $100 \mathrm{~g}=53.3$
Molar mass (g/mole)	12.01	1.01	16.00
No of moles $=$ mass $/ \mathrm{molar}$ mass	$40.0 / 12.01=$	$5.7 / 1.01=5.64$	$53.3 / 16.00=$ 3.33
Divide both sides by lower value to give a whole number of 1 for one element at least	$3.33 / 3.33=1$	$5.64 / 3.33=1.7$	$3.33 / 3.33=1$
To convert both numbers to	3	5	3

whole numbers, x3			
Empirical formula	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$		

$E F M=(12.01 \times 3)+(1.01 \times 5)+(16.0 \times 3)=89.08 \mathrm{~g} / \mathrm{mole}$
No of multiples in molecular formula $=$ Molar mass/EFM $=175.0$ $\mathrm{g} / \mathrm{mole} / 89.08 \mathrm{~g} / \mathrm{mole}=1.96=2$

Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6}$
5.

Elements	N	H	
\% mass	87.4	12.6	
Mass (g) in 100 g sample	$87.4 / 100 \mathrm{x}$ $100 \mathrm{~g}=87.4$	$12.6 / 100 \mathrm{x}$ $100 \mathrm{~g}=12.6$	
Molar mass (g/mole)	14.01	1.01	
No of moles $=$ mass/molar mass	$87.4 / 14.01=$ 6.24	$12.6 / 1.01=$ 12.48	
Divide both sides by lower value to give a whole number of 1 for one element at least	$6.24 / 6.24=1$	$12.48 / 6.24=2$	
Empirical formula	NH_{2}		

$E F M=14.01+(1.01 \times 2)=16.02 \mathrm{~g} / \mathrm{mole}$
No of multiples in molecular formula = Molar mass/EFM = $32.05 \mathrm{~g} / \mathrm{mole} / 16.02 \mathrm{~g} / \mathrm{mole}=2$

$$
\text { Molecular formula }=\mathrm{N}_{2} \mathrm{H}_{4}
$$

Activity 2.2.11:
2.
a. 1 meat patty +3 lettuce leaves +2 slices of tomato $=1$ hamburger
b.
i. 4 hamburger buns
ii. 4 meat patties
iii. $4 \times 3=12$ lettuce leaves
iv. $4 \times 2=8$ slices of tomato
c.
i. Three hamburgers possible. There are too many buns for 3 meat patties which need 3 buns, $3 \times 3=9$ lettuce leaves and $3 \times 2=6$ tomato slices. A bun, 3 lettuce leaves and 2 slices of tomato will be left over.
ii. Four hamburgers possible. Four meat patties need 4 buns, $4 \times 3=12$ lettuce leaves and $4 \times 2=8$ tomato slices. All the ingredients will be used up.
iii. Three hamburgers possible. All the buns and patties will be used up. Nine (3×3) lettuce leaves and $3 \times 2=6$ tomato slices will be used. Three lettuce leaves and 2 slices of tomato will be left over.
iv. Three hamburgers possible. Four buns and patties need $4 \times 3=12$ lettuce leaves and $4 \times 2=8$ slices tomato.
There are too few of both. For 3 hamburgers need 3 buns, $3 \times 3=9$ lettuce leaves and $3 \times 2=6$ slices tomato. So left over will be 1 bun, 1 patty, 2 lettuce leaves and 3 tomato slices.
d. Number of hamburger patties possible $=$ total mass mince/ mass of 1 patty $=1500 \times 1000 \mathrm{~g} / 200 \mathrm{~g}=7500$. Therefore 7500 hamburgers can be made from 1500 kg mince.
e. Percentage product (hamburgers) made
= actual product/expected product x 100\%
$=7 / 10 \times 100=70 \%$
f. All the ingredients have to be present in the correct proportion to use up all of the ingredients with no waste. The proportion is: 1 bun: 1 patty: 3 lettuce leaves: 2 tomato slices.
g. The mass of mince determines the number of patties possible. The same is true of the mole and relative molar mass and Avogadro's number - 1 molar mass contains 6.02×10^{23} particles so any other mass will contain a proportion of particles determined by the ratio of that mass to the molar mass.
h. Burning of patties leads to wastage - other ingredients can no longer be used up. SO this determines the percentage yield which will be lower than the originally expected yield. An employee who burns patties would probably be fired because of wastage of ingredients and therefore money (profits).
a. H_{2} represents 1 mole of hydrogen gas which contains 2 atoms of hydrogen
b. O_{2} represents 1 mole of oxygen gas which contains 2 atoms of oxygen
c. $\mathrm{H}_{2} \mathrm{O}$ represents 1 mole of water which contains 2 atoms of hydrogen and 1 atom of oxygen
d. State symbols: g means gas and I means liquid
e. The equation is not balanced.

Balanced equation: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
f. In a balanced equation the Law of Conservation of Mass is obeyed since all the atoms on the LHS are accounted for on the RHS
g. The reaction ratio for $\mathrm{H}_{2}: \mathrm{O}_{2}$ is $2: 1$
h. One mole of oxygen requires 2 moles of hydrogen to react completely
i. Two moles of product would be expected
j. The mass needed can be worked out from the molar mass. mass H needed $=2 \times(1.01 \times 2)=4.02 \mathrm{~g}$ mass O needed $=16.00 \times 2=32.00 \mathrm{~g}$
k. Mass of product to be expected $=$
$2 \times(1.01 \times 2)+(16.00 \times 2)=36.02 \mathrm{~g}$
I. One mole hydrogen occupies $22.41 \mathrm{dm}^{3}$

Two moles hydrogen are required $=2 \times 22.41 \mathrm{dm}^{3}=44.82 \mathrm{dm}^{3}$
One mole of oxygen is needed $=22.41 \mathrm{dm}^{3}$
m .4 moles of hydrogen could react with 2 moles of oxygen. With only 1 mole of oxygen present only 2 moles of hydrogen would be used up. So oxygen limits the amount of product that can be formed. It is the limiting reactant.
n. 2 moles of hydrogen could react with 1 mole of oxygen to produce 2 moles of water (from the balanced equation). Five moles of oxygen would be left over and hydrogen would be the limiting reactant.

Activity 2.2.12:

1. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ can give 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ 5 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ can give 5 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
2. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ requires 2 moles of NaOH

3 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ requires 6 moles of NaOH
3. 6 moles of NaOH are needed (question 2)

RMM of $\mathrm{NaOH}=22.99+16.00+1.01=40.00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Mass of 6 moles $=6 \times 40.00 \mathrm{~g}=240.0 \mathrm{~g}$
4. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ requires 2 moles of NaOH

20 moles of NaOH is excess NaOH - only 2 moles are required for the acid present. 18 moles of NaOH will be left over.
5. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ requires 2 moles of NaOH .

NaOH is present in excess - only 2 moles of NaOH are needed.
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ can give 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
6. Yes $5-2=3$ moles of NaOH will be left over.

RMM of $\mathrm{NaOH}=22.99+16.00+1.01=40.00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Mass of 3 moles $=3 \times 40.00 \mathrm{~g}=120.0 \mathrm{~g}$
7. 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 2 moles of NaOH give 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$

RMM of $\mathrm{Na}_{2} \mathrm{SO}_{4}=(2 \times 22.99)+32.07+(4 \times 16.00)=142.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Mass of 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}=1 \times 142.1=142.1 \mathrm{~g}$
8. $\%$ yield $=$ actual mass/theoretical mass $\times 100 \%$

$$
=131.5 \mathrm{~g} / 142.1 \mathrm{~g} \times 100 \%=92.5 \%
$$

Answers 2.2.13:
1.
a. 30.97 amu
b. 12.01 g
c. 65.39 g
d. 238.03 amu
e. 39.10 g
2.
a. 1 mole contains 6.02×10^{23} atoms
2.3 moles contain $2.3 \times 6.02 \times 10^{23}$ atoms $=1.38 \times 10^{24}$
b. 1 mole contains 6.02×10^{23} molecules
4.13 moles contain $4.13 \times 6.02 \times 10^{23}$ molecules $=2.49 \times$ 10^{24}
3.
a. $\mathrm{RMM} \mathrm{Ag}_{2} \mathrm{SO}_{4}=(2 \times 107.87)+32.07+(4 \times 16.00) \mathrm{g} \cdot \mathrm{mol}^{-1}$

$$
=311.8{\mathrm{~g} \cdot \mathrm{~mol}^{-1}}^{-1}
$$

b. $\mathrm{RMM} \mathrm{SF}_{6} \quad=32.07+(6 \times 19.00) \mathrm{g} \cdot \mathrm{mol}^{-1}$

$$
=146.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

c. $\mathrm{RMM} \mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}=54.94+(2 \times 14.01)+(6 \times 16.00)$ g. mol^{-1}

$$
=179.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

d. $\mathrm{RMM} \mathrm{N}_{2} \mathrm{O}_{5}=(2 \times 14.01)+(5 \times 16.00) \mathrm{g} \cdot \mathrm{mol}^{-1}$

$$
=110.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

e. $\mathrm{RMM} \mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}=(3 \times 87.62)+(2 \times 30.97)+(8 \times 16.00)$ g. mol^{-1}

$$
=452.8 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

4.

a. $\mathrm{RMM} \mathrm{Fe} 2 \mathrm{O}_{3}=(2 \times 55.85)+(3 \times 16.00) \mathrm{g} \cdot \mathrm{mol}^{-1}$

$$
=159.7{\mathrm{~g} \cdot \mathrm{~mol}^{-1}}^{-1}
$$

$\% \mathrm{Fe} \quad=(2 \times 55.85) / 159.7 \times 100 \%$

$$
=69.9 \%
$$

$$
\% \mathrm{O}=(3 \times 16.00) / 159.7 \times 100 \%
$$

$$
=30.1 \%
$$

b. $\mathrm{RMM} \mathrm{C}_{8} \mathrm{H}_{18}=(8 \times 12.01)+(18 \times 1.01) \mathrm{g} \cdot \mathrm{mol}^{-1}$

$$
=114.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

$$
\% \mathrm{C} \quad=(8 \times 12.01) / 114.3 \times 100 \%
$$

$$
=84.1 \%
$$

$$
\% \mathrm{H} \quad=(18 \times 1.01) / 114.3 \times 100 \%
$$

$$
=15.9 \%
$$

5. $\mathrm{RMM} \mathrm{Fe} \mathrm{F}_{2} \mathrm{O}_{3}=(2 \times 55.85)+(3 \times 16.00) \mathrm{g} \cdot \mathrm{mol}^{-1}$

$$
=159.7 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

$\% \mathrm{Fe} \quad=(2 \times 55.85) / 159.7 \times 100 \%$

$$
=69.9 \%
$$

Mass of Fe in 1000.0 kg of iron oxide $=69.9 / 100 \times 1000.0 \mathrm{~kg}$

$$
=699.0 \mathrm{~kg}
$$

6. STP means a temperature of $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and a pressure of 1 atmosphere (100 kPa)
7. Molar volume is the volume occupied by one mole of any gas at a particular temperature and pressure.
8. $\mathrm{RMM} \mathrm{CO} 2=12.01+(2 \times 16.00)=44.01 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ Moles $\mathrm{CO}_{2} \quad=$ mass $/ \mathrm{RMM}=100.0 \mathrm{~g} / 44.01 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ $=2.27 \mathrm{~mol}$
1 mole CO_{2} contains 6.02×10^{23} molecules
2.27 moles contains $2.27 \times 6.02 \times 10^{23}$ molecules $=1.37 \times 10^{24}$ molecules
9. At $0^{\circ} \mathrm{C}$ and 1 atm pressure, 1 mole of gas will occupy $22.4 \mathrm{dm}^{3}$ If the volume is $1.00 \mathrm{dm}^{3}$ the number of moles $=1 \times 1.00 / 22.4=$ 0.045
10. 2.0 moles of $\mathrm{K}_{2} \mathrm{SO}_{4}$
a. contains $2 \times 2.0=4.0$ moles of K atoms
b. contains $2 \times 1.0=2.0$ moles of S atoms $=2.0 \times 32.07 \mathrm{~g}$ of S atoms
$=64.1 \mathrm{~g}$ of S atoms
c. contains $4 \times 2.0=8.0$ moles of O atoms $=8.0 \times 6.02 \times 10^{23}$ O atoms
$=48.2 \times 10^{23} \mathrm{O}$ atoms $=4.8 \times 10^{24} \mathrm{O}$ atoms
d. contains $2 \times 1.0=4.0$ moles of formula units of compound $=4.0 \times 6.02 \times 10^{23}$ formula units $=2.4 \times 10^{24}$ formula units
e. $\mathrm{RMM} \mathrm{K}_{2} \mathrm{SO}_{4}=(2 \times 39.10)+32.07+(4 \times 16.00)=174.3$ g. mol^{-1}

Mass of 2.0 moles $=2.0 \times 174.3 \mathrm{~g}=348.6 \mathrm{~g}$
11.
a. $\mathrm{RMM} \mathrm{NaCl}=22.99+35.45 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=58.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Moles $\mathrm{NaCl}=1.75 \mathrm{~g} / 58.44 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=0.03$ moles
Concentration $=$ moles $/$ volume $=0.03 \mathrm{~mol} / 0.363 .5 \mathrm{dm}^{3}$
$=0.08 \mathrm{~mol}^{\mathrm{dm}}{ }^{13}$
b. $R M M \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{6}=(12 \times 12.01)+(22 \times 1.01)+(6 \times 16.00)$

$$
\mathrm{g} . \mathrm{mol}^{-1}=262.34 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

Moles $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{6}=20.0 \mathrm{~g} / 262.34 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=0.08$ moles
Concentration $=$ moles $/$ volume $=0.08 \mathrm{~mol} / 0.250 \mathrm{dm}^{3}$

$$
=0.32 \mathrm{~mol}^{2} \mathrm{dm}^{!3}
$$

12. Moles of sugar present $=2.5$

RMM of sugar
$=262.34 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Mass of sugar $\quad=$ moles \times RMM $=2.5 \times 262.34 \mathrm{~g}$
$=655.9 \mathrm{~g}$
13.
a. 6 moles
b. Molar volume at STP $=22.4 \mathrm{dm}^{3}$

6 moles would occupy $6 \times 22.4 \mathrm{dm}^{3}=134.4 \mathrm{dm}^{3}$
c. 5 moles $\mathrm{CH}_{4}(\mathrm{~g})$ need 10 moles $\mathrm{O}_{2}(\mathrm{~g})$

7 moles $\mathrm{O}_{2}(\mathrm{~g})$ are available, so $\mathrm{O}_{2}(\mathrm{~g})$ is limiting
7 moles $\mathrm{O}_{2}(\mathrm{~g})$ will convert $7 / 2=3.5$ moles $\mathrm{CH}_{4}(\mathrm{~g})$
3.5 moles $\mathrm{CH}_{4}(\mathrm{~g})$ would produce 3.5 moles $\mathrm{CO}_{2}(\mathrm{~g})$
d. $R M M O_{2}=(2 \times 16.00)=32.00 \mathrm{~g} . \mathrm{mol}^{-1}$

Moles $\mathrm{O}_{2}=$ mass $/ \mathrm{RMM}=1000.0 \mathrm{~g} / 32.00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

$$
=31.25 \text { moles }
$$

31.25 moles O_{2} will convert $31.25 / 2$ moles $\mathrm{CH}_{4}=15.63$
moles
$R M M C H_{4}=12.01+(4 \times 1.01) \mathrm{g} \cdot \mathrm{mol}^{-1}=18.05 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Mass of $\mathrm{CH}_{4}=$ moles \times RMM $=15.63 \mathrm{~g} \times 18.05 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ $=282.1 \mathrm{~g}$
14. Molar mass $\mathrm{CaCO}_{3}=40.08+12.01+(3 \times 16.00) \mathrm{g} / \mathrm{mole}$ $=100.09 \mathrm{~g} / \mathrm{mole}$
Molar mass $\mathrm{CaO}=40.08+16.00 \mathrm{~g} / \mathrm{mol}=56.08 \mathrm{~g} / \mathrm{mole}$
Ratio of $\mathrm{CaO}: \mathrm{CaCO}_{3}=56.08: 100.09$ (56.08/100.09)
Number of grams CaCO_{3} present $=20.7 \mathrm{~g}$
Theoretical mass of CaO possible $=20.7 \mathrm{~g} \times 56.08 / 100.09$

$$
=11.6 \mathrm{~g}
$$

Actual yield $=6.81 \mathrm{~g}$
$\%$ yield = actual yield /theoretical yield x 100\%
$=6.81 / 11.6 \times 100 \%$
$=58.7 \%$

Activity 2.2.14

1. D
2. A
3. Activation energy $\left(E_{a}\right)$ is the minimum amount of energy for a reaction to occur. It is the amount of energy required to create an activated complex.
4. A catalyst changes the reaction mechanism, in the process lowering the activation energy.
5. Increase concentration by distillation of a solvent Increase concentration by increasing pressure of a gas, Increase temperature Add a catalyst
6. The reaction is exothermic. The $\Delta \mathrm{H}$ is $-100 \mathrm{KJ} / \mathrm{mol}$ which means heat is released.

7. Add a catalyst

Activity 2.2.15:

1.

a. The reaction would go to the right hand side (RHS)
b. The reaction would go to the left hand side (LHS)
c. The reaction would go to the right hand side (RHS) - in the direction of fewer moles.
d. The reaction would go to the left hand side (LHS) - in the direction of more moles.
e. There would be no change.
f. The reaction would go to the left hand side (LHS)
g. The reaction would go to the right hand side (RHS)
h. A catalyst does not affect the equilibrium - it increases reaction rate.
i. You could increase the concentration of A or B and reduce the temperature. If gases were involved a pressure change could also be made.
2.
a. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})-\Delta \mathrm{H}$
b. Towards the RHS
c. Towards the LHS as the reaction is exothermic so the shift is towards the endothermic side to lower heat released.
d. Increasing pressure would drive the reaction to the RHS which is the side with fewer moles of gas present.
e. Removing NH_{3} would pull the reaction to the RHS.
f. A catalyst would increase the rate at which equilibrium is reached but would not shift the equilibrium.
g. Not too high temperature, high pressure, catalyst, removing product as it is formed.

Answers 2.2.16:

1. A reaction that is in dynamic equilibrium is one in which the rate of the forward reaction and the rate of the reverse reaction are equal, so the concentrations of reactants and products no longer change.
2. Le Chatelier's Principle states that if a reversible reaction that is in a state of dynamic equilibrium is disturbed by changing the conditions, the reaction will do what it can to oppose that change.
3. For a reversible reaction between gases, if the forward reaction is exothermic raising the temperature?
4. For a reversible reaction between gases, if the forward reaction is endothermic raising the temperature increases the yield.
5.

a. Equilibrium remains the same and CO concentration does not change
b. Equilibrium moves to the left and CO concentration increases
c. Equilibrium moves to the right and CO concentration decreases
d. Equilibrium moves to the right and CO concentration decreases
6. The Haber Process

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Activity 2.2.17:

1. Sulfuric acid: $\mathrm{H}_{2} \mathrm{SO}_{4}$

Table salt: NaCl
Sodium hydroxide: NaOH
Hydrochloric acid: HCl
Potassium hydroxide: KOH
2. In acids H is the common element, The common ion would be H^{+}
3. In bases O and H are common elements. The common ion would be OH^{-}
4. $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

The acid and the base react with each other to produce salt and water. Water is neutral and so is salt. So, as more and more NaOH is added to the HCl the point will be reached where the solution is neutral. If still more NaOH is added it will become an excess which cannot be neutralised by the acid any longer and the solution will become basic, turning the litmus paper blue.

Answers 2.2 18:

1. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
3. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
4. $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
5. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Reactions 1, 3 and 4 are neutralization reactions. Water is a product in each of these reactions.

The salts are potassium nitrate, KNO_{3}, sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and magnesium chloride, MgCl_{2}

Answers 2.2 19:

1.

a. An acid is a substance that releases hydrogen $\left(\mathrm{H}^{+}\right)$ions when placed in water
b. A base is a substance that releases hydroxide $\left(\mathrm{OH}^{-}\right)$ions when placed in water
c. An alkali is a base which is soluble in water
d. A salt is the product of a reaction between an acid and a base
e. A neutral solution is one which is neither acidic nor alkaline
2.
a. One can use litmus paper. Place red and blue litmus paper into the solution/liquid. If the red paper turns blue and the blue paper remains blue, the solution is a base. If the blue paper turns red and the red paper remains red, the solution is an acid. Litmus papers are not really suitable for measuring neutral solutions.
b. The alkaline solution and the acidic solution start to react with each other. Initially there is too little alkaline solution to neutralise all the acid so the litmus paper would stay reddish in colour. As more alkaline solution is added more and more of the acid is neutralised until there is neither acid nor base in the mixture. As more alkaline solution is added the solution will
become more alkaline because there is no acid left to neutralise it and the litmus paper will turn blue.

Activity 2.2.20: Answer the following multiple choice questions:

1. Which of these acids is most likely to be dangerous? B
2. Which statement about bases is true? B
3. Which statement about alkalis is true? B
4. Litmus paper that is placed in an acidic solution: C
5. A liquid is tested for pH using a universal indicator. The colour shown is green. This means that the liquid is: A
6. A liquid that has a pH of 6.5 is: B
7. The contents of your stomach have a pH of 1 . What does this mean? C
8. When an acid reacts with a metal hydroxide the products formed are: A
9. The products of a reaction with acid are a salt, carbon dioxide and water. What is the substance reacting with the acid? B
10. Which acid could be used to manufacture a fertilizer called ammonium nitrate? C
11. What gas is produced when magnesium reacts with sulfuric acid? C
12. What salt is formed when copper oxide reacts with nitric acid? B
13. A Brønsted-Lowry base is: B
14. Which of the following statements is true? B
15. A hydrogen ion $\left(\mathrm{H}^{+}\right)$is the same as a: A
